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Abstract
We introduce and study a class of infinite-horizon non-zero-sum non-
cooperative stochastic games with infinitely many interacting agents using
ideas of statistical mechanics. First we show, in the general case of asymmetric
interactions, the existence of a strategy that allows any player to eliminate
losses after a finite random time. In the special case of symmetric interactions,
we also prove that, as time goes to infinity, the game converges to a Nash
equilibrium. Moreover, assuming that all agents adopt the same strategy, using
arguments related to those leading to perfect simulation algorithms, spatial
mixing and ergodicity are proved. In turn, ergodicity allows us to prove
‘fixation’, i.e. players will adopt a constant strategy after a finite time. The
resulting dynamics is related to zero-temperature Glauber dynamics on random
graphs of possibly infinite volume.

PACS numbers: 02.50.Le, 89.65.Ef, 89.65.Gh
Mathematics Subject Classification: 82C20, 91A18, 91A25, 91A43, 91B72,
91D30

1. Introduction

The aim of this paper is to study a class of stochastic games with infinitely many interacting
agents that is closely connected with a Glauber-type non-Markovian dynamics on random
graphs. Let us briefly explain the setting and our contributions both from the point of view of
game theory and of physics, referring to the following section for a precise construction of the
model. Our central results are theorems 1, 2 and 3 below.
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We consider an infinite number of agents located on the vertices of the two-dimensional
lattice, where each agent is randomly linked with others, and has positive or negative feelings
regarding them. Moreover, each agent is faced with the need of taking decisions that affect
himself and all others to whom he is linked. The objective of each agent is to take (non-
cooperative) decisions that ultimately do not affect him negatively. Under a specific choice
of the payoff function of each player, we shall prove that there exists a decision policy for
achieving this goal, and even more, that if each player adopts this strategy, a non-cooperative
Nash equilibrium is reached.

From the physical point of view, we studied a Glauber-type dynamics on a random graph
with the following features: the dynamics is non-Markovian and has long-range interactions,
in the sense that the maximum distance between interacting particles is unbounded. For
such dynamics we prove spatial mixing (hence ergodicity) and fixation. To the best of our
knowledge, these problems are solved here for the first time, even in the simpler case of a
standard Glauber dynamics on random graphs. Problems of dynamics on random graphs
have attracted a lot of attention in recent years (see the monograph [4] for an extensive
overview), as these structures are often more realistic models of several phenomena than
classical deterministic structures (e.g. in network modeling, spread of epidemics, opinion
formation, etc). For instance, Cooper and Frieze [2] proved the existence of a critical coupling
parameter at which the mixing time for the Swendsen–Wang process on random graphs
of sufficiently high density is exponential in the number of vertices; Dyer and Frieze [5]
studied the rapid mixing (in time) of Glauber dynamics on random graphs with average degree
satisfying a certain condition (see also Frieze and Juan [8] for a related result). In Hatchett et al
[10], the authors analyze the dynamics of finitely connected disordered Ising spin models on a
random connectivity graph, focusing on the thermodynamic limit. Pérez Castillo and Skantzos
[17] study the Hopfield model on a random graph in scaling regimes with finite average number
of connections per neuron and spin dynamics as in the Little–Hopfield model. On the other
hand, as mentioned above, even though (spatial) mixing is one of the most natural questions
to ask about stochastic models of interacting particle systems, it has not been discussed in
the literature, to the best of our knowledge. It is probably important to recall that mixing is
a key ingredient to obtain further results, such as ergodicity. Moreover, just to cite another
important application, using Stein’s methods (see e.g. [1]), mixing implies the central limit
theorem, which gives qualitative estimates on the number of sites (or agents) with a positive
spin (or opinion) in large regions of the graph.

We would like to stress that our results on mixing are quite general, and if one is only
interested in the physical aspect of our work, they could essentially skip the part of the paper
which deals with stochastic games, and concentrate only on the physical aspect.

Let us briefly discuss how the model and results of the present paper are related to the
existing literature on using methods of the theory of interacting particle systems in economic
modeling and game theory. One of the first and still most cited works on the subject is a paper
by Föllmer [6], who considered a pure exchange economy with (countably) infinitely many
agents, each of which have random preferences and endowments. In particular, agents are
located on the vertices of the d-dimensional lattice Z

d , and their preferences can be influenced
by all his neighbors (i.e. such that their euclidean distance is one). The author then considers
the problem of existence of a price system stabilizing the economy. See also Nummelin
[16] for further results in this connection, but with a finite number of agents. In Horst and
Scheinkman [12] the authors studied a system of social interactions where agents are located
on the nodes of a subset of Z

d , and each of them is provided with a utility function and a set of
feasible actions. The behavior of an agent is assumed to depend on the choices of other agents
in a reference group, which can be random and unbounded. The authors, in analogy to our
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case, work under the assumption that the probability of two agents being linked decays with
distance, and are concerned with the existence of equilibrium (in the classical microeconomic
sense). Horst [11] determined conditions such that non-zero-sum discounted stochastic games
with agents interacting locally and weakly enough have a Nash equilibrium. While the set
of feasible actions in this paper is much richer than in ours, we do not assume to have any
knowledge on the reference group of each agent, apart of being finite almost surely. We only
allow agents to be able to observe the dynamics of a (local) configuration around them. As a
result of the structural differences in the settings, the optimal strategy in [11] is Markovian,
while in our case it can never be Markovian.

In general, the following features of our setting and results could be particularly interesting
from a game-theoretic perspective: we consider games where interactions among agents are
not known a priori, and we explicitly construct a strategy that leads the game to equilibrium,
while the typical result of game theory is the existence of equilibrium and a characterization
of optimal strategies at equilibrium.

Let us also briefly recall that several other models of interacting particle systems admit
a natural interpretation in terms of social interaction. Well-known examples are the voter
process (see e.g. Liggett [13]), used in models for the formation and spread of opinions, or the
Sherrington–Kirkpatrick model of spin glasses (see e.g. section 2.1 in Talagrand [18]). Infinite
interacting particle systems have found applications in sociology as well; see, for instance,
Liggett and Rolles [14] for a model of formation of social networks.

The organization of the paper is as follows: in section 2 we describe the model so we
show how agents interact and what their aim is; in section 3 a general strategy achieving
the goal of each agent is given, and section 4 proves spatial mixing, hence ergodicity, of the
dynamics, when all agents adopt the same strategy. Finally, using the results on spatial mixing
and ergodicity, we prove that the game ‘fixates’, i.e. agents will adopt a constant strategy after
a finite time. This phenomenon is reminiscent of the fixation of zero-temperature dynamics
(see e.g. De Santis and Newman [3], Fontes [7], Häggström [9], Nanda et al [15]).

2. Model and problem formulation

Let us first introduce the notation used throughout the paper. We consider the two-dimensional
lattice Z

2 with sites x = (x1, x2) and distance d defined by

d(x, y) = |x1 − y1| + |x2 − y2|. (1)

The cardinality of a subset � ⊆ Z
2 is denoted by |�|. We denote by �M the set of all

x ∈ Z
2 such that d(O, x) � M , with O = (0, 0). If x ∈ Z

2,�M(x) stands for �M + x.
Our configuration space is S = {−1, +1}Z

2
. The single spin space {−1, +1} is endowed

with the discrete topology, and S with the corresponding product topology. Given η ∈ S, or
equivalently η : Z

2 → {−1, +1}, and � ⊆ Z
2, we denote by η� the restriction of η to �.

Given a graph G = (V ,E), where V and E are the sets of its vertices and edges, respectively,
we shall denote by {x, y} an element of E connecting x, y ∈ V . For any x ∈ V , we shall
denote by ρx the distance of the longest edge having x as endpoint, namely we define

ρx = sup
y:{x,y}∈E

d(x, y).

Recall that the distance in variation of two probability measures µ and ν on a discrete set �

is defined as

‖µ − ν‖ = 1

2

∑
ω∈�

|µ(ω) − ν(ω)|.
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We shall now introduce an idealized model of a large ensemble of interacting individuals.
The ingredients will be a random graph, a function on its edges (specifying an environment,
roughly speaking) and a stochastic process with values in S describing the time evolution of
the system.

Let G = (V ,E) be a random graph, whose set of vertices V is given by all sites of the
two-dimensional lattice Z

2, and whose set of edges E satisfies the following conditions: edges
exist with the probability one between each site x and all y such that d(x, y) = 1, and

P(|{y : {x, y} ∈ E}| < ∞) = 1 ∀ x ∈ V. (2)

We suppose that each site is occupied by an individual (we shall often identify individuals
with the sites they occupy, when no confusion will arise), and that relations among individuals
are modeled by the edges of G and by a function j : V × V → {−1, 0, +1}; j (x, y) = 0 if
{x, y} /∈ E, otherwise j (x, y) ∈ {−1, +1}.

In particular, we shall say that individuals x and y are linked if {x, y} ∈ E, and the value
j (x, y) shall account for the ‘feelings’ of x toward y: we set j (x, y) = +1 if x is a ‘friend’ of
y, and j (x, y) = −1 if x is an ‘enemy’ of y. We do not assume symmetry of j , i.e. friendship
of an individual toward another may not be reciprocal. Moreover, we assume that individuals
do not know with whom they are connected, nor whether these individuals are friends or
enemies. Note also that in this model x can be friend of y, y friend of z, but x and z can be
either friends or enemies (a phenomenon also called frustration in physics).

Let us now introduce a stochastic process σ : [0,∞) → S modeling the evolution of the
‘action’ (or opinion) of the individuals. We shall use a graphical construction of the process,
which provides a specific version of basic coupling, i.e. it provides versions of the whole
family of stochastic processes on G (or on any finite subset of it), all on the same probability
space. We assume that the initial configuration σ0 is chosen from a symmetric Bernoulli
product measure. Moreover, the continuous-time dynamics of σt is given by independent
Poisson processes (with rate 1) at each site x ∈ V corresponding to those times (tx,n)n∈N when
the individual x is asked to update his opinion. Before describing the set of feasible ways of
opinion updating, let us introduce a reward for a generic individual x at the time tx,n, as a result
of his action:

ht (x) = sgn


 ∑

y:{x,y}∈E

j (x, y)σt (x)σt (y)


 ,

where we have set, for simplicity, t ≡ tx,n.
We allow x to base his decision on the history of σ	s

(s), s � 0, and h(x), where 	s are
finite balls centered in x with random radius which is nondecreasing with respect to s, finite
almost surely for all s � 0, and not ’exploding’. Formally, the decision of individual x at
time tx,n is a {−1, +1}-valued random variable ux,n measurable with respect to the σ -algebra
generated by {σ	s

(s), s � tx,n} and {hs(x), s � tx,n}, where 	s are balls centered in x such
that

	∞ = lim
s→∞ 	s

exists and is finite with probability one. We shall denote by Ex
t the filtration just defined.

The dynamics of σ is then completely specified by the updating rule

σtx,n
(x) = ux,n.

Several remarks are in order: the reward ht (x) obtained by individual x as a result of his
decision at time t = tx,n is positive if the difference between pleased and damaged friends
is bigger than the difference between pleased and damaged enemies, negative if the opposite
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happens and zero if the value is the same. Since at a fixed arrival time t = tx,n of the Poisson
clock of x, no other clock is ringing, i.e. P(ty,m = t) = 0 for all y �= x and for all m ∈ N, the
dynamics of σ is well defined (also using the graphical construction). Finally, at any positive
time t, σt (x) represents the last decision taken by individual x up to time t.

We formulate the following problem for the generic individual x: find a strategy
πx = (ux,1, ux,2, . . .) such that

ht (x) � 0 a.s.

for all t � Tx , where Tx is a finite (random) time.

Remark 1. We built the random graph G on the two-dimensional lattice Z
2 to give a

‘geographic’ dimension to the problem and to have a simple notion of distance on the graph.
However, all results in the following section still hold replacing Z

2 with any higher dimensional
lattice Z

d , d � 3. We shall see below that choosing d = 2 also affects a constant appearing in
an assumption used to prove spatial mixing.

3. Admissible strategies that eliminate losses

In this section, we construct explicitly a strategy πx for the generic individual x that
asymptotically eliminate negative rewards, i.e. such that P(ht (x) � 0) = 1 for all t greater
than a random time, which is finite with the probability one. It will also be clear that this
strategy is non-cooperative, that is πx eventually eliminate negative rewards irrespectively of
the strategies adopted by all other individuals.

For simplicity of notation, let us describe the strategy π ≡ π0 for the individual located
at the origin O. The arrival times of his Poisson process and the corresponding decisions and
rewards will be denoted by tn, un and hn, n ∈ N, respectively.

The strategy π = (u1, u2, . . .) is best defined algorithmically through a decision tree.
We also need an additional ‘data structure’, i.e. a collection R of ordered triples of the type
(η, u, h), where η ∈ S is supported on finite balls, u ∈ {−1, +1} and h ∈ {−1, 0, +1}.

At the first arrival time t1, u1 is chosen accordingly to a Bernoulli law with parameter 1/2
(a ‘fair coin toss’), and (σ�1 , u1, h1) is added to R.

The description of the algorithm then follows inductively: at time tn+1, let �Mn
be the

support of the last configuration added to R. Let σ ′ := σ�Mn
(tn+1−) and check whether there

exists (σ ′, u′, h′) ∈ R.

• If yes, set

un+1 = u′ h′

|h′| ,

with the convention 0/|0| := 1. The reward hn+1 corresponding to un+1 is now obtained.

– If hn+1 � 0, no further action is needed.
– If hn+1 < 0, then add to R the triplet (σ�Mn+1 , un+1, hn+1).

• Otherwise, set un+1 = un, and add to R the triplet (σ ′, un+1, hn+1).

The above algorithm formalizes the following heuristic procedure: the agent starts looking
at the configuration on the smallest ball centered around him and plays tossing a coin. The
next time his clock rings, he checks whether he has already seen such a configuration. If it is
a new one, he will again memorize it and play by tossing a coin, while if it is a known one he
will play as he did before if he got a positive reward, or the opposite way if he got a negative
reward. Of course it could happen that this way of playing still does not guarantee a positive
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reward, in which case he will memorize the configuration on a larger ball around himself and
its associated outcome.

Remark 2. One of the key steps of the algorithm requires one to look for a triplet (σ ′, u′, h′)
in R, given σ ′ = σ�, for a certain � ⊂ Z

2. This operation is uniquely determined, i.e. there
can exist only one triplet (σ ′, u′, h′) ∈ R with a given σ ′. This can be seen as a consequence
of the structure of the algorithm itself. Namely, as soon as the player ‘observes’ the same
configuration σ ′ = σ� with a different associated outcome h, he will immediately enlarge the
support of observed configurations �.

We shall now prove that the strategy just defined eliminates losses for large times.

Theorem 1. For any individual x, there exists a random time Tx , finite with probability one,
such that

P(ht∨Tx
(x) � 0) = 1.

Proof. Let us define a sequence of random times (τn)n∈N as follows:

τn = inf{n ∈ N | ∃(σ , u, h) ∈ R, supp σ = �n+1},
with the convention that inf ∅ = +∞. In other words, τn is the first time that individual x
includes into his information set R the box �n+1 (and if this never happens, then τn = +∞).
Let τk be the last finite element of the sequence (τn)n∈N. By assumption (2) we know that
|{y : {x, y} ∈ E}| is finite, hence k � ρx because ht (x) only depends on those y linked to x,
for all times t. Therefore the biggest �n observed by the agent in the origin is finite.

Define the family of sets

Ak(t) = {σ�k
(tx,�) : tx,� ∈ [τk, t]}.

It clearly holds Ak(t1) ⊆ Ak(t2) for t1 < t2; hence we can define

Ak(∞) = lim
t↑∞

Ak(t).

Since Ak(t) ⊂ {−1, +1}�k , and �k is finite, then there exists Tx > 0 such that Ak(Tx) =
Ak(∞), hence

Ak(t) = Ak(∞) ∀ t > Tx.

We claim that hx,n � 0 for all tx,n > Tx . In fact, for every tx,n > Tx there exists (σ , u, h) ∈ R
with σ(y) = σtx,n

(y) for all y ∈ �k . But since τk+1 = ∞, the algorithm will give as the output
a un such that hn � 0 (to convince oneself it is enough to ‘run’ the algorithm). In a more
suggestive way, one could say that after Tx individual x has already been faced at least once
with all possible configurations that are relevant for him, and therefore knows how to take the
right decision. �

Remark 3

(i) Note that the strategies of other individuals never enter into the arguments used in the
proof. Therefore individual x is sure to reach the goal of eliminating losses in finite time
irrespectively of the strategies played by all other individuals.

(ii) However, we would like to stress that the random time Tx is not a stopping time (i.e. it
is not adapted to the filtration Ex

t ). In fact, Tx depends in general on the decisions of
other individuals, whose policies are not necessarily adapted to Ex

t . In general, even if all
policies were adapted, the random times {Tx}x∈Z

2 would not be stopping times.
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(iii) Let us also observe that although we formally allowed the strategy πx to be adapted to Ex
t ,

the information used by the strategy constructed in the proof of theorem 1 is much smaller.
Similarly, one could refine the way the memory structure R is constructed, for instance
by eliminating configurations on smaller balls, when one starts to add new configurations
on balls of higher radius. However, we preferred to keep the construction of R as it is to
avoid non-essential complications.

As a consequence of theorem 1 and of observation (i) in the above remark, one has the following
result, which essentially states that the games admit an ‘asymptotic’ Nash equilibrium.

Proposition 1. Let M ∈ N and assume that each player x ∈ �M := [−M,M] × [−M,M]
adopts the strategy πx defined above. Then there exists a finite random time TM after which
no agent can gain by any change in their strategy given the strategies currently pursued by
other players.

It is important to observe that in the above proposition we implicitly assume that each
player only cares about ‘not loosing’, or equivalently he distinguishes only between ‘loosing’
(ht (x) < 0) and ‘not loosing’ (ht (x) � 0). In this sense, after TM , there is no point for
any player x ∈ �M to change his strategy, as proved in theorem 1. The statement of the
proposition is in general false if the player distinguishes between ht (x) > 0, ht (x) = 0 and
ht (x) < 0.

We think that one can prove (and we leave it as a conjecture) that this asymptotic
equilibrium is not Pareto. This could be done adapting ideas of Häggström [9], who proved
that zero-temperature dynamics on a random graph does not reach the minimum energy
configuration.

4. Spatial mixing and ergodicity

The main result of this section, which plays an essential role in the results about fixation of
the next section, is that a spatial mixing property holds. We shall work under the following
hypothesis, which states that the probability of two agents being linked decays algebraically
with their distance.

Standing assumption. It holds that

P({x, y} ∈ E) � C

d(x, y)9
, (3)

for all y such that d(x, y) > 1, where C is a positive constant.
Note that assumption (3) implies (2). Moreover, the exponent appearing on the right-hand

side of (3) depends on the dimension of the lattice and it is needed in order to use well-known
combinatorial estimates on path counting in Z

2 in the proofs to follow. However, it would not
be difficult to generalize our arguments to any higher dimensional lattice Z

d , d � 3, at the
expense of replacing the exponent 9 with a (higher) constant depending on the dimension d,
and of using more complicated estimates in the proofs. Since this point is not essential and
would only add technical complications, we preferred to fix d = 2.

Before stating the main theorem of this section, we need to introduce the following set of
conditions.

Hypothesis H. The random graph G = (V ,E) and the process σ : [0,∞) → {−1, 1}Z
2

satisfy the following conditions.
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(i) For each vertex x ∈ Z
2 there exists a Poisson process Px , and the Poisson processes

{Px}x∈Z
2 are mutually independent. Denoting by ϒx = {tx,n}, the set of arrival times of

Px , the value of σt (x) is allowed to change only at times t ∈ ϒx .
(ii) Given any couple (x, y) ∈ Z

2 × Z
2, the probability P({x, y} ∈ E) is defined and it

can depend on d(x, y). Moreover, for any choice of (x, y), (v,w) ∈ Z
2 × Z

2 with
(x, y) �= (v,w), the events {x, y} ∈ E and {v,w} ∈ E are mutually independent.

(iii) The evolution of the process is local, i.e. σtx,n
(x) is measurable with respect to Fx

tx,n
, where

Fx
t denotes the σ -algebra generated by {σs(y) : {x, y} ∈ E or y = x, s < t}. We denote

by FV
t the σ -algebra generated by ∪x∈V Fx

t .
(iv) Both the probability of two agents being linked and the evolution of σ are translation

invariant, i.e. P({x, y} ∈ E) = P({x + v, y + v} ∈ E) and P(σt ∈ A | σ0 = η) = P(σt ∈
A + v|σ0(·) = η(· + v)).

We can now state the main theorem of this section.

Theorem 2. If hypothesis H holds true, then σ satisfies the spatial mixing property

lim
�→Z

2
P
(
σ�0(t) = η

∣∣F�c

t

) = P(σ�0(t) = η), (4)

where �0 is any finite region in Z
2.

Note that the process σ is translation invariant if each agent adopts the same strategy at each
decision time (the strategy does not need to be the one defined in section 3). Before giving the
proof of the theorem, we establish some auxiliary results.

We shall use the following terminology: by ‘box of side length L’ we mean the set
[−L/2, L/2]2 ⊂ Z

2. For ρ < 1, we call ‘subbox of side length Lρ’ any one of the L1−ρ square
sets into which a box of side length L can be subdivided. We always assume Lρ,L1−ρ ∈ N

(without loss of generality, as it will be clear). Furthermore, we shall say that two subboxes
R and S are ‘neighbors’ if d(R, S) �

√
2, so every subbox has eight neighbor subboxes.

We shall call ‘path of subboxes’ a sequence of subboxes (Rk)k=1,...,K such that Rk and Rk+1

are neighbors for each k = 1, . . . , K − 1. Two subboxes R, S are ‘linked’ if there exist
x ∈ R, y ∈ S such that {x, y} ∈ E.

In the following lemma we introduce a sequence of boxes increasing to Z
2, each of them

further subdivided into a variable number of boxes also increasing to Z
2, but at a lower rate.

Lemma 1. There exist a sequence of integer numbers Ln ↑ +∞, a sequence of square boxes
QLn

of side length Ln, each of them partitioned into subboxes of side L
ρ
n, ρ = 13/42, such

that only a finite number of the boxes QLn
will contain linked non-neighbor subboxes.

Proof. We use a Borel–Cantelli argument on a suitable sequence of box side lengths Ln. In
particular, let L be a positive integer, QL a square of side L, subdivided into subboxes of side
Lρ . The probability of an agent x to be linked with some other agent of a non-neighbor subbox
is bounded by ∑

y:d(x,y)�Lρ

C

d(x, y)9
� C1

∫ ∞

Lρ

1

v9
2πv dv = C2

1

L7ρ
,

where C,C1, C2 are positive constants. Therefore, two agents in non-neighbor subboxes exist
with probability not larger than

L2
∑

y:d(x,y)�Lρ

C

d(x, y)9
� C2

1

L7ρ−2
→ 0, as L → ∞.
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Taking now a subsequence Ln growing to infinity rapidly enough,∑
P(ALn

) < ∞,

where ALn
denotes the event that QLn

contains linked non-neighbor subboxes. By Borel–
Cantelli lemma, only a finite number of occurrences of ALn

can happen, which finishes the
proof. �

Recall that for a sequence of i.i.d. standard exponential random variables {Xi} one has

P

(
n∑

i=1

Xi < nα

)
� e−�(α)n ∀α < EX1, (5)

where the so-called rate function � is given by

�(α) = α − 1 − log α.

Proof of theorem 2. We use a coupling argument to show that

sup
ζ ′,ζ ′′

|P(σ�0(t) = η|σ�c(0) = ζ ′) − P(σ�0(t) = η|σ�c(0) = ζ ′′)| → 0 (6)

and hence, by the inequality

sup
ζ ′,ζ ′′

|P(σ�0(t) = η|σ�c(0) = ζ ′) − P(σ�0(t) = η|σ�c(0) = ζ ′′)|

� |P(σ�0(t) = η|σ�c(0) = ζ ) − P(σ�0(t) = η)| ∀ ζ,

that (4) holds.
We construct two coupled systems σ ′, σ ′′ on the same probability space supporting σ

in the following way: σ ′
x(0) = σ ′′

x (0) = σx(0) for all x ∈ �; σ ′ and σ ′′ update their state
according to the same translation-invariant rule of σ ; all other randomness in the system (the
random graph, the Poisson processes, the ‘coin tosses’ needed for the decision rules) coincide.
Define, for any x ∈ V , the random time

τx = inf{t � 0 : σ ′
x(t) �= σ ′′

x (t)},
and introduce the process

[0,∞) × V � (t, x) �→ νx(t) = 1(t � τx) ∈ {0, 1}.
Using a pictorial language, we shall say that we color x with black as soon as the two processes
σ ′ and σ ′′ differ at x. Let us also introduce another process ν̃ : [0,∞) × V → {0, 1} with
the property ν̃x(t) � νx(t) a.s. for all x and all t. The dynamics of ν̃ is specified as follows:
ν̃x(0) = 0 for all x ∈ V , and ν̃x can turn to one as a consequence of two classes of events. In
particular, (i) ν̃x(t) = 1 if there exists x ′ belonging to the same subbox of x such that νx ′(t) = 1
and (ii) ν̃x(τ ) = 1 if there exists y belonging to a neighbor subbox such that ν̃y(τ ) = 1, where
τ is any arrival time of the Poisson process relative to x. Moreover, we assume that 1 is an
absorbing state for ν̃x , for all x. Using again a pictorial analogy, we could say that the black
area generated by ν̃ is bigger than the black area generated by ν. In particular, as soon as a site
x turns black, (i) implies that the whole subbox to which it belongs becomes black as well.

By lemma 1, there exists a positive integer N and a sequence Ln such that for all n > N ,
the boxes QLn

contain no linked non-neighbor subboxes. The shortest path of subboxes
from the boundary of the box QLn

to its center has a length L
1−ρ
n

/
2 (therefore, for n large

enough, the shortest path of subboxes from the boundary of the box QLn
to �0 has length

greater or equal than L
1−ρ
n

/
2 − 1). Setting TQLρ = infx∈QLρ tx,1 (recall that tx,1 is the first

arrival time of the Poisson processes relative to x), one has that the distribution of TQLρ is
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Exp(L2ρ), where Exp(λ) stands for the law of an exponential random variable with parameter
λ. The minimum time for the formation of a path of k ‘black’ subboxes along a fixed path (of
sites) from the boundary of QLn

to the origin is given by

T =
k∑

i=1

Ti

for all n > N (from now we shall tacitly assume n > N), where T1, . . . , Tk are i.i.d.
exponential random variables with parameter L

2ρ
n (independence and the value L

2ρ
n follow by

the memoryless property of the exponential distribution).
Note that the sequence of subboxes in a path turning black does not influence the minimum

time needed for the formation of such path, which is a sum of independent exponential random
variables of parameter L

2ρ
n , using again the memoryless property of exponential distributions.

It follows by (5) that, for 0 < α < 1, one has

P
(
T � kαL−2ρ

n

)
� e−(α−1−log α)k.

Denoting by T∂QLn→O the (random) time needed to form a path of black subboxes from the
boundary of QLn

to the origin O, we obtain the estimate

P

(
T∂QLn→O � α

2
L1−3ρ

n

)
� 4L1−ρ

n

∑
k� L

1−ρ
n
2

8 · 7k−1 exp(−(α − 1 − log α)k),

hence, for 0 < α < 1
7e

,

lim
n→∞ P

(
T∂QLn→O � α

2
L1−3ρ

n

)
= 0.

Here the term 4L
1−ρ
n accounts for the possible initial subbox on the boundary of QL, and

8 · 7k−1 is an upper bound for the number of paths (of subboxes) of length k starting in a
given subbox. We obtain that, as n → ∞, the term on the right-hand side goes to zero like
e−βL

1−ρ
n (modulo polynomial terms), with β as a positive constant. Again by a Borel–Cantelli

argument we obtain

P
(

lim
L→∞

T∂QL→O = ∞) = 1.

Moreover, the evolution of the central subbox is completely independent of the configuration
outside � until it turns black, and so the theorem is proved. �

Remark 4. Although (6) has been proved only for a particular choice of a sequence of
increasing boxes �n, one can easily show that any increasing sequence of boxes will do. In
fact, the supremum appearing in (6) decreases with respect to �; hence it is enough to prove
the theorem for any (fixed) subsequence.

5. Fixation

In this section, we shall work under the general assumptions introduced in sections 2 and 4,
and furthermore we assume that each player adopts the same strategy (hence the dynamics is
translation invariant), and that interactions are symmetric, i.e. that j (x, y) = j (y, x) for any
x, y ∈ V . The latter hypothesis is essential, as it would be possible to find counterexamples to
our results in the case of asymmetric interactions. As before, we shall denote by x an arbitrary
agent, fixed throughout this section. Let us define the random time Tx as

Tx = sup{t : at time t agent x sees a new configuration or loses}. (7)
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As it follows from theorem 1, Tx is finite with probability one. Moreover, by definition, agent
x will not loose at any time after Tx . Let us also define the random variable Mx as the number
of time agent x changes his state (i.e. updates his opinion) during the time interval (0, +∞).

The main result of this section is the following:

Theorem 3. Assume that each agent adopts the strategy constructed in section 3. Then each
agent x ∈ V updates his opinion only a finite number of times, i.e.

P(Mx < ∞) = 1.

Before proving theorem 3, we shall need some more definitions and preparatory results.
Let us recall the definition of ρx :

ρx = sup
y:{x,y}∈E

d(x, y) (8)

is the distance from x of his farthest connected agent. Note that one has, as follows by the
standing assumption (3),

P(ρx � r) �
∑
s�r

4s
C

s8+ε
� K

r6+ε
, (9)

where C and K are constants depending on x. Therefore Eρk
x , 1 � k � 5 are finite:

Eρk
x � 1 +

∞∑
r=2

rk
P(ρ = r) � 1 +

∞∑
r=2

rk
P(ρ � r) � 1 +

∞∑
r=2

rk K

r6+ε
< ∞. (10)

Let us also define the energy (or Lyapunov) function on a finite set � ⊂ Z
2 as

H�(σ) = −
∑
u∈�

h̃u(σ ), (11)

where

h̃u(σ ) =
∑

v:{u,v}∈E

j (u, v)σuσv. (12)

In the following, we shall denote by �n the square box [−n, n] × [−n, n].

Lemma 2. There exists a continuous function e : R+ → [−Eρ2, Eρ2] such that

lim
n→∞

H�n
(σ (t))

|�n| = e(t) a.s. (13)

Proof. By the definitions of h̃x(σ (t)), ρx , it follows that for each time t

−ρ2
x � h̃x(σ (t)) � ρ2

x ,

hence, taking expectations, recalling (10), and using translation invariance

−∞ < −Eρ2
O � Eh̃x(σ (t)) � Eρ2

O < ∞.

At any time t, using the space ergodicity of the system (implied by the spatial mixing property
proved in theorem 2), we obtain

lim
n→∞

H�n
(σ (t))

|�n| = Eh̃O(σ (t)) a.s. (14)

Setting e(t) = Eh̃O(σ (t)), we just have to prove that e is continuous. Using again the spatial
ergodicity of σ , the proportion of agents in �n taking at least a decision in the time interval
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]t1, t2[ tends to 1 − e−(t2−t1) � t2 − t1 as n → ∞. Since each agent is endowed with a
Poisson process that is independent from all other processes and random variables describing
the dynamics of the system, the mean energy variation of each agent is bounded by Eρ2.
Therefore we also have

|e(t2) − e(t1)| = lim
n→∞

∣∣H�n
(σ (t2)) − H�n

(σ (t1))
∣∣

|�n|
� (1 − e−(t2−t1))Eρ2 � (t2 − t1)Eρ2, (15)

i.e. the function e is Lipschitz continuous. �

Let us now define the following discrete random sets for agent x, which are subsets of the
set of arrival times of his Poisson process:

N1(x) = {t : t � Tx, the agent in x sees a known configuration at the time t and loses}
N2(x) = {t : t � Tx, there is an arrival of the Poisson process in x} \ N1(x)

N3(x) = {t : t > Tx, the agent in x changes opinion}
Note that by definition of Tx , at any time t > Tx agent x can only see known configurations,
and can only win.

We also define, for every t > 0 and x ∈ Z
2, the random sets

Ni(t, x) = Ni(x) ∩ [0, t],

for i = 1, 2, 3.
Moreover, for � ⊂ Z

2, we set

Ni(t,�) =
⋃
x∈�

Ni(t, x).

The dynamics of the system and the definition of e(t) imply that e(t) is determined only
by the changes of στ (·), τ ∈ {Ni(t, x)}x∈Z

2 , i = 1, 2, 3. We can therefore write

e(t) = e1(t) + e2(t) + e3(t),

where ei(t) denotes the component of e(t) determined by changes of στ (·) for τ ∈
{Ni(t, x)}x∈Z

2 . Moreover, one has e2(t) � 0 because we are eliminating the arrivals where
the agent lost, and in this case the energy can only decrease.

We are now in the position to prove the theorem on the fixation of the stochastic dynamics.

Proof of theorem 3. In virtue of the translation invariance of the system, it is enough to prove
the result for the agent in the origin. First observe that MO � |N1(O)| + |N2(O)| + |N3(O)|,
because N1(O) and N2(O) may contain Poisson arrival times in which the agent O does not
change his opinion. Denoting Ni(O) by Ni for simplicity of notation, we shall prove that
|Ni | < ∞ almost surely for i = 1, 2, 3. Let us first observe that the following inclusion
relations hold:

{|N1(O)| + |N2(O)| = ∞} ⊂ {TO = ∞} ∪

⋃

n�1

{N1(O) = ∞, TO < n}

 ,

and

{|N1(O)| + |N2(O)| = ∞, TO < n}
⊂ {|Arrivals in (0, n) of the Poisson process in the origin| = ∞, TO < n}.
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Recalling that P({TO = ∞}) = 0 we obtain

P(|N1(O)| + |N2(O)| = ∞)

�
∞∑

n=1

P(|Arrivals in (0, n) of the Poisson process in the origin| = ∞) = 0.

Thus, we only need to show that |N3(O)| is almost surely finite. First we observe that one has

e1(t) = lim
n→∞

1

|�n|
∑

τ∈N1(t,�n)

H�n
(σ (τ )) − H�n

(σ (τ−)) � Eρ3
O a.s., (16)

because the number of changes in the origin N1(t,O) is at most ρO (the maximum number of
enlargements of the box observed by the agent x), and in any change the energy can increase
at most by ρ2

O . Finally, the spatial ergodicity yields the almost sure upper bound in (16).
At any time τ ∈ N3 the energy H�(σ(t)) decreases at least of one unit, i.e. H�(σ(t)) �

H�(σ(t−)) − 1, otherwise the agent does not change opinion. Thus

e3(t) = lim
n→∞

1

|�n|
∑

τ∈N3(t,�n)

H�n
(σ (τ )) − H�n

(σ (τ−))

� lim
n→∞

−|N3(t,�n)|
|�n| = −E|N3(t,O)|, (17)

where we have used once more the spatial ergodicity.
By lemma 2 and noting that the energy is initially zero (because agents choose +1 or −1

with probability 1/2), one has the following inequality

−Eρ2 � e(t) = e1(t) + e2(t) + e3(t) � e1(t) + e3(t),

which holds uniformly in time t. Using inequalities (16) and (17), we obtain E|N3(t,O)| �
Eρ3

O + Eρ2
O � ∞ uniformly in t, hence also in the limit as t → ∞. But E|N3(O)| < ∞

obviously implies |N3(O)| < ∞ a.s., so we have shown that MO � |N1(O)| + |N2(O)| +
|N3(O)| < ∞ and the proof is complete. �

Remark 5. We can also deduce, following the proof of theorem 3, that

P(N3 > C) �
E

(
ρ2

O

)
+ E

(
ρ3

O

)
C

,

as an immediate consequence of Markov’s inequality.

Remark 6. Let us briefly comment on the connection between the fixation result just proved
and the results of De Santis and Newman [3]. The improvement is twofold: namely, the
dynamics considered here does not coincide (locally) with zero-temperature dynamics. It is
immediate to prove that at any given time there is at least an agent which does not follow
the zero-temperature dynamics. This implies that on any time interval the zero-temperature
dynamics and our dynamics are almost surely different. Our could say, perhaps somewhat
informally, that our dynamics is a perturbation of zero-temperature dynamics with the property
of preserving fixation. Moreover, as already mentioned several times, our dynamics is non-
Markovian, while the arguments used in [3] hold only for Markovian dynamics.
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[6] Föllmer H 1974 Random economies with many interacting agents J. Math. Econ. 1 51–62
[7] Fontes L R 2003 Spin Dynamics at Zero Temperature (Rio de Janeiro: Publicaões Matemáticas do IMPA, IMPA)
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